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LETTER TO THE EDITOR 

Turbulent diffusion as a random-walk process 

W D McComb 
School of Engineering Science, University of Edinburgh, King’s Buildings, Mayfield Road, 
Edinburgh EH9 3JL, UK 

Received 3 September 1974 

Abstract. A random-walk type of diffusion coefficient is shown to reduce to the classical, 
continuum result for turbulence, in the limit of long diffusion times. The analysis is carried 
out in a Lagrangian frame, where the mean-square displacement may be calculated explicitly, 
and the frequency of such displacements obtained from the RiceKac theorem. The further 
problem of finding the random-walk diffusivity in terms of Eulerian variables is considered. 

Turbulent diffusion is usually studied in a Lagrangian coordinate system (ie one which 
follows the motion of the particle), where some exact results may be obtained. In 
particular, when the velocity is a stationary random function of position and time, 
Taylor’s (1921) well known analysis (in modified form, Kampe de Feriet 1939) yields the 
variance of particle position, in one dimension, as 

t ’  

( X 2 ( t ) )  = 2 f dt’ 1 dt”(u(t’)u(t’-t”)) = 2 ( u 2 )  (t-?)RL(T)dq (1) 

where RL(?) is the Lagrangian correlation function. For t >> zL (where zL = J; RL(T) d?), 
equation (1) leads to the important result that the diffusion process is Fickian with 
constant diffusivity (Hinze 1959) 

0 0  ld 

D, = (u2)zL. (2) 

As this result is of little use in applications, due to the general problem of relating 
Lagrangian and Eulerian correlations, the practical response has been to base phe- 
nomenological theories on the observed normal distribution of particle displacements 
from an initial location. However, this type of approach normally fails to predict a 
quantitative form of diffusion coefficient (Hinze 1959). 

Recently, a new approach has been followed by Hutchinson et a1 (1971), who study 
the deposition of small particles from a turbulent pipe flow. They argue that the diffusion 
process is a random walk, in the limit of many steps, and apply Chandrasekhar’s (1943) 
form of the diffusion equation. The (one-dimensional) diffusivity is then given by 

where ( I 2 )  is the mean-square displacement of the particles and n is the number of dis- 
placements per unit time. Both n and ( 1 2 )  are then arbitrarily expressed in terms of the 
friction velocity and Townsend’s length scale for large eddies. 
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For the special case of stationary, homogeneous turbulence, one can do rather better. 
The Lagrangian integral scale, zL, is normally interpreted as a ‘mean free time’. On this 
basis we may use Taylor’s analysis to calculate ( I 2 )  for t >> T ~ ,  thus: 

(4) ( 1 2 )  = ( ( x ( t + ? L ) - X ( t ) ) 2 )  = 2(u2)zE, 

and then, from (3), D, = n(u2)t?. Intuitively, we might put n - ?L1 and recover (2) 
from (3). However, this seems rather a crude step for what is essentially a continuum 
process. Instead, we estimate n from the Rice-Kac formula (Rice 1954) for the frequency 
of the zeros of a random function. We have : 

a2RL(t) l i 2  42 1 =---, 
n r=o n t~ 

where tL is the Lagrangian micro-scale and the last step follows by its definition (Hinze 
1959). 

Substitution of (5) and (4) into (3) shows that the ‘random-walk’ (D,) and ‘continuous- 
diffusion’ (DT) forms of the diffusion coefficient are equal at long times, provided 
t J r ,  = J2/n = 0.45. Measurements of Lagrangian quantities are few and, in general, 
rather unreliable. Among the best would seem to be those of Shlien and Corrsin (1974), 
who found t J T ~  = 0.69. 

Our second point concerns the practical application of equation (3). For this form to 
be useful, we need a way of expressing (3) in terms of Eulerian variables. This means that, 
like Hutchinson et a1 (1974), we are forced to make assumptions. 

First, we would make the suggestion that such assumptions, although unrestricted 
by the nature of the turbulence, should nevertheless be chosen to yield the correct form 
for the special case of homogeneous turbulence. In this case, introducing the Lagrangian 
length scale iL = ( u 2 ) 1 1 2 ~ L ,  we may make the replacements (Hinze 1959) (u2)  = ( u 2 ) ,  
where U is the Eulerian velocity, and LE = piL, where iE is an Eulerian integral length- 
scale and p - 1. Then, for homogeneous turbulence only, equation (2) reduces to 

D, = P - ’ ( U 2 ) 1 ’ 2 & .  (6)  

In treating equation (3) in an Eulerian frame, we now make assumptions which are 
slightly different from those of Hutchinson et a1 (1971). By analogy with the Lagrangian 
analysis we assume ( 1 2 )  = c2i,E, where c is a constant. On average, the particle will 
take time tE = cAE(u2)- l”  to travel the distance cAE and so we put n = t i  ’. With these 
assumptions, we obtain an Eulerian form for the Chandrasekhar diffusion coefficient. 
That is. from equation (3) 

which agrees with equation (6) (the correct form for homogeneous turbulence), if 

Coincidentally, for the particular case of pipe flow, equation (7) does not differ much 
from Hutchinson’s form of D,. This is because the RMS radial velocity is fairly constant, 
with respect to radial position, and roughly equal to the friction velocity. Likewise, the 
various integral length scales are nearly constant and of much the same magnitude. 
It would, however, be interesting to make a comparison of the two diffusivities in a more 
sensitive problem : say, predicting the radial variation of particle number density, when 

c = 2p-1 - 2. 
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diffusion is from a point source. So far we have found that equation (7) gives very good 
results for heat or trace-gas diffusion from a point source in a turbulent jet (Davidson and 
McComb 1974). 
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